Groupwise Dimension Reduction via Envelope Method
نویسندگان
چکیده
منابع مشابه
Quadro: a Supervised Dimension Reduction Method via Rayleigh Quotient Optimization.
We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference...
متن کاملDimension reduction via principal variables
For many large-scale datasets it is necessary to reduce dimensionality to the point where further exploration and analysis can take place. Principal variables are a subset of the original variables and preserve, to some extent, the structure and information carried by the original variables. Dimension reduction using principal variables is considered and a novel algorithm for determining such p...
متن کاملModel Approximation via Dimension Reduction
In the initial stages of refining a mathematical model of a real-world dynamical system, one is often confronted with many more variables and coupled differential equations than one intuitively feels should be sufficient to describe the system. Yet none of the variables may seem so irrelevant as to be excludable nor so dominant as to explain the overall dynamics. Part of the problem might even ...
متن کاملDimension Reduction via Colour Refinement
Colour refinement is a basic algorithmic routine for graph isomorphism testing, appearing as a subroutine in almost all practical isomorphism solvers. It partitions the vertices of a graph into “colour classes” in such a way that all vertices in the same colour class have the same number of neighbours in every colour class. Tinhofer [27], Ramana, Scheinerman, and Ullman [23] and Godsil [12] est...
متن کاملGroupwise envelope models for imaging genetic analysis.
Motivated by searching for associations between genetic variants and brain imaging phenotypes, the aim of this article is to develop a groupwise envelope model for multivariate linear regression in order to establish the association between both multivariate responses and covariates. The groupwise envelope model allows for both distinct regression coefficients and distinct error structures for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2015
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2014.970687